Single-particle based helical reconstruction—how to make the most of real and Fourier space

نویسنده

  • Carsten Sachse
چکیده

The helical assembly is a fundamental organization principle of biomacromolecules. To determine the structures of helical filaments or tubes has been helped by the fact that many different views of the helical unit are present to reconstruct a three-dimensional image from a single helix. In this review, I present the current state of helical image reconstruction from electron cryo-micrographs by introducing Fourier-based processing alongside real-space approaches. Based on this foundation, I describe how they can be applied to determine the symmetry and high-resolution structure of helical assemblies. In the past, the main structure determination approach of helical assemblies from electron micrographs was the Fourier-Bessel method, which is based on a comprehensive theory and has generated many successful applications in the last 40 years. The emergence of the single-particle technique allowed segmented helical specimens to be treated as single particles, thus rendering new specimens amenable to 3D helical reconstruction and facilitating high-resolution structure analysis. However, helical symmetry determination remains the crucial step for a successful 3D reconstruction. Depending on the helical specimen, Fourier and real-space approaches or a combination of both provide important clues to establish the correct helical symmetry. I discuss recent developments in combining traditional Fourier-Bessel procedures with single-particle algorithms to provide a versatile and comprehensive approach to structure determination of helical specimens. Upon introduction of direct electron detectors, a series of near-atomic resolution structures from helical assemblies have become available. As helical organization is fundamental to many structural assemblies of the cell, these approaches to structure elucidation open up promising capabilities to study the underlying structures at atomistic resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases.

Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this wo...

متن کامل

Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

PURPOSE A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data...

متن کامل

Helical reconstruction in RELION

We describe a new implementation for the reconstruction of helical assemblies in the empirical Bayesian framework of RELION. Our approach calculates optimal linear filters for the 3D reconstruction by embedding helical symmetry operators in Fourier-space, and deals with deviations from perfect helical symmetry through Gaussian-shaped priors on the orientations of individual segments. By incorpo...

متن کامل

3D macromolecule structure reconstruction from electron micrograph by exploiting symmetry and sparsity

Single particle reconstruction is often employed for 3-D reconstruction of diverse macromolecules. However, the algorithm requires a good initial guess from a priori information to guarantee the convergence to the correct solution. This paper describes a novel model free 3-D reconstruction algorithm by employing the symmetry and sparsity of unknown structure. Especially, we develop an accurate ...

متن کامل

Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction

Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy and two-dimensional (2D) electron crystallography have become relatively routine methodologies and a large number of structures have been solved using these methods. At th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015